Солнечных батарей

Содержание

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Альтернативные источники энергии активно захватывают потребительский рынок. Лет десять назад большинство людей не представляло себе возможность приобретения таких инженерных разработок, как ветряная электростанция или станция, работающая на солнечных батареях. Сейчас это становится возможным. Солнечные батареи для дома: стоимость комплекта, затраты на монтаж и техническое обслуживание – экономически выгодное решение сегодняшнего дня.

Солнечные батареи относятся к альтернативным источникам электроэнергии

Общие характеристики и возможность купить солнечные батареи для частного дома

Если говорить о солнечных батареях в техническом плане, нужно понимать, что речь идет о фотоэлектрических системах электроснабжения (ФСЭ). Основная цель таких устройств – это преобразование энергии солнечного света в электрическую на основе физического закона фотоэффекта. Около двухсот лет продолжается процесс усовершенствования солнечных установок по выработке электроэнергии. В настоящее время инженерная мысль достигла значительных результатов в разработке фотоэлектрического оборудования, особенно в показателях полезного действия – от 1 до 46% (доля преобразованной солнечной энергии).

Солнечные батареи преобразовывают энергию солнечного света в электрическую энергию

Современный рынок солнечных систем электроснабжения можно считать в достаточной мере сформированным, так как он позволяет делать выбор товара из немалого числа предложений, из очень большого рыночного сегмента. Чтобы ответить на самый часто задаваемый вопрос, сколько стоят солнечные батареи для частного дома, необходимо разобраться в технологических и конструктивных особенностях ФСЭ. Структуризация предлагаемого рынком оборудования предполагает три основные категории солнечных систем, основываясь на их функциональных, конструктивных и технических особенностях.

К первой категории ФСЭ относятся автономные системы, которые не подключены к основной сети электроснабжения. Такие системы работают в собственном контуре сети для прямого электропитания подключенного оборудования. Максимальная эффективность работы достигается наличием в комплекте аккумулирующего устройства (аккумуляторные батареи), которое позволяет использовать накопленную электроэнергию в случае падения интенсивности солнечного света (т.е. пониженная вырабатываемая мощность) и в случае моментов превышения потребляемой мощности над вырабатываемой.

Также автономным можно считать установленный комплект солнечных батарей для дома, используемый напрямую источниками нагрузки без аккумуляторных элементов.

Ко второй категории относятся открытые ФСЭ. В своей комплектации данные системы не имеют аккумуляторов и подсоединяются к основной сети электропитания через специальный инвертор. Если потребляемая мощность не превышает значение вырабатываемой, основная сеть отключена. В противном случае отключается ФСЭ и потребление производится из основной сети. Такие системы очень надежные, более дешевые, но если нет электропитания от основной сети, то и солнечная станция не работает.

Автономная система ФСЭ с аккумулятором и фотоэлектрическим инвертором

Третью категорию представляют комбинированные ФСЭ. Они представляют собой объединенный формат первой и второй категории. Это позволяет иметь в своем функционале дополнительное качество – лишняя вырабатываемая или накопленная электроэнергия может передаваться в основную сеть и иметь коммерческую ценность.

Данная категория наиболее дорогая, так как использует в своей конфигурации сложные сетевые фотоэлектрические инверторы и зарядные устройства.

Полезный совет! Для бесперебойного режима электроснабжения в случаях одновременного прекращения работы общей сети и воздействия негативных метеоусловий, необходимо иметь резервный источник электропитания. В качестве такого источника может быть небольшой (2-5 кВт) электрогенератор, работающий на бензине или дизельном топливе.

Цена солнечных батарей для дома: стоимость комплекта

Решать вопросы экономии затрат на электроэнергию за счет установки солнечных электростанций необходимо в условиях полного информирования о ценах на весь комплект и предстоящих затратах на их установку и эксплуатацию. Частый вопрос, сколько стоит солнечная батарея для дома, четкого ответа не имеет, так как очень много факторов влияет на ценообразование.

Стоимость минимального комплекта солнечных батарей для дома составляет 120000 рублей

Устоявшаяся цена главного элемента ФСЭ (солнечной батареи) в среднем по минимуму (но также минимуму по качеству) порядка 50-60 руб. за вырабатываемый 1Вт мощности. Следовательно, цена солнечных батарей для частного дома мощностью 100 и 200 Вт будет находиться в размере 6000 и 12000 руб. соответственно.

Состав комплекта станции зависит от ее категории и мощности. В него могут входить контроллер зарядки, аккумуляторная станция, инвертор и соединительная аппаратура. При выборе, например, комплекта первой категории и номинальной мощности порядка 2 кВт (2000 Вт), цена комплекта солнечных батарей для дома составит от 120 тыс. руб. и выше.

А сравнивать весь затрачиваемый капитал необходимо с экономическим эффектом, получаемым от разницы в стоимости 1 кВт/час централизованной сети и стоимости, создаваемой ФСЭ.

Самая «свежая» статистика рынка солнечных батарей показывает, что отношение цен на единицу электроэнергии составляет 8,8 раза. Это значит, что электроэнергия, вырабатываемая солнечной станцией, в 8,8 раза дешевле предоставляемой электроэнергии через общую сеть, взятых в равном эквиваленте.

Важным критерием выбора в направлении использования ФСЭ служит также фактор возможности обеспечить бесперебойную работу автоматики в системах отопления, охранного слежения и пожарного оповещения. К перечню можно отнести компьютерную домашнюю сеть и группы электронных контрольно-измерительных датчиков.

В состав комплекта могут входить помимо солнечных батарей контроллер зарядки, аккумуляторная станция, инвертор, соединительная аппаратура

Применение и цена солнечных батарей для дома

Большой выбор солнечных батарей предоставляет возможность использовать их в разнообразном качестве и применении, так как при желании купить солнечные батареи для дома, цена на сегодняшний день уже позволяет это сделать широким слоям населения. Зная их основные характеристики, такие как стандарт выходящего напряжения (12, 24В и выше), а также параметры вырабатываемой номинальной мощности, можно использовать их локально, не приобретая всего комплекта. На рынке средняя стоимость солнечных батарей для частного дома колеблется в пределах 60 руб. за вырабатываемый 1 кВт электрической мощности.

Если требуется использовать лампочку в темном помещении напряжением 12В и мощностью 25 Вт, то достаточно купить и подключить к ней напрямую солнечную батарею аналогичных параметров и это обойдется не более чем в 2000 руб. и тратить электричество на лампочку в 60-75 Вт в какой-нибудь коморке уже не придется. Можно подключить небольшой колодезный насос для дневного полива любой ландшафтной зоны мощностью 200 Вт и питанием в 24В. При затратах в 11000-12000 руб. можно в течение всего весенне-летнего периода и более 10 лет иметь независимую систему полива.

Необходимый комплект солнечных батарей для дачи

Если рассматривать вопрос о целесообразности применения солнечных систем для дачного участка, следует учитывать факторы стабильности подачи электроэнергии в поселок, уровень его инсоляции (время нахождения под прямыми солнечными лучами), требуемую мощность электрификации и фактор риска воровства в пустующее от хозяев время года. Лучший вариант – это стационарная установка ФСЭ первой категории.

Оптимальный вариант для дачи — стационарная установка ФСЭ первой категории

Учитывая невысокую потребляемую мощность дачи, можно организовать 100% замену централизованного электроснабжения на автономное и дешевое. В другом случае, когда стационарная установка солнечной станции по каким-то критериям не оправдана, можно использовать переездной комплект быстрой сборки.

Обратите внимание! Эксперты в области использования ФСЭ провели расчет и выявили, что солнечные батареи стратегически и экономически целесообразны для применения в летнее время года в частных домах и дачных домиках площадью от 50 до 300 м², рассчитанных на семью до четырех человек.

Все знают, что солнечные батареи производят электричество из солнечного излучения. Но для многих встает вопрос, какое напряжение у солнечных батарей. Ведь мы все привыкли пользоваться электроприборами работающим на бытовом электричестве 220 Вольт переменного напряжения. А мелкие устройства как игрушки, телефоны и прочая электроника вообще работают на самых разнообразных аккумуляторных батарейках постоянного тока. Автомобили питаются от больших аккумуляторных батарей стандарта на 12 и 24 вольта тоже постоянного тока. Так какое напряжение у солнечных батарей, для каких устройств они подойдут, и можно ли их взять и подключить к электроприборам напрямую?Чтобы получить переменное напряжение необходимо вращение

электромагнитного поля, для изменения полярности напряжения, от отрицательного значения до положительного. Кроме того вращение электромагнитного поля дает плавное изменение напряжения, абсолютно без скачков, ступенек и резкого изменения полярности. Во всех остальных случаях получение электричества без преобразования будет постоянным положительным, т.е. выше значение напряжения будет выше нуля.

Так как в солнечных батареях нет никакого вращения и электронного преобразования, а солнечный свет, падающий на них в течение дня практически постоянен, облачность не в счет, то получаемое электричество от солнечных батарей будет с напряжением постоянного тока.

Максимальный ток в цепи

Ток, генерируемый солнечными батареями, зависит от типа соединения. В последовательном соединении сила тока равна значению самого слабого звена в стринге, например, частично затенённой панели. При параллельном соединении ток равен сумме токов от отдельных панелей. Значение тока также зависит от температуры, чем она выше, тем выше генерируемый ток. Изменение интенсивности тока в зависимости от температуры определяется коэффициентом Isc панели (в нашем случае 0,04 %/K).

Максимальный ток, который может генерировать одна панель, можно рассчитать по формуле:

где:

  • Isc (Tr) — значение тока солнечной батареи при 70 ° C;
  • Isc — значение тока в условиях STC, указанное в характеристике модуля (9,17 А);
  • Tr — максимальная температура (70 °C);
  • αT — температурный коэффициент Isc (0,04 %/K).

Isc (Tr) = 9,17 · (1 + (70-25) · 0,04 / 100) = 9,33

Из расчетов видно, что для инвертора SYMO 10.0-3-M мощностью 10 кВт на первый вход трекера MPP не рекомендуется устанавливать боле 2-х параллельно соединённых солнечных батарей, а на второй возможно только последовательное соединение. Поскольку при параллельной обвязке токи суммируются. Сумма токов от трёх панелей (3 · 9,33 = 27,99 А) будет превышать максимальное значение в 27А (I dc max1) для первого входа, а сумма токов от двух панелей в параллель (2 · 9,33 = 18,66) выше 16,5 А (I dc max2) для второго входа MPPT.

Солнечные батареи основе кремния

Солнечные батареи (СБ) на основе кремния составляют на сегодняшний день порядка 85% всех выпускаемых солнечных панелей. Исторически это обусловлено тем, что при производстве СБ на основе кремния использовался обширный технологический задел и инфраструктура микроэлектронной промышленности, основной «рабочей лошадкой» которой также является кремний. В результате, многие ключевые технологии микроэлектронной промышленности такие как выращивания кремния, нанесения покрытий, легирования, удалось адаптировать для производства кремниевых батарей с минимальными изменениями и инвестициями. Кроме того, кремний – один из самых распространенных элементов земной коры и составляет по разным данным 27-29% по массе. Таким образом, нет никаких физических ограничений для производства значительной доли электроэнергии Земли с имеющимися запасами Si.

Различают два основных типа кремниевых СБ – на основе монокристаллического кремния (crystalline-Si, c-Si) и на основе мультикристаллического (multicrystalline-Si, mc-Si) или поликристаллического. В первом случае используется высококачественный (и, соответственно, более дорогой) кремний выращенный по методу Чохральского, который является стандартным методом для получения кремниевых пластин-заготовок для производства микропроцессоров и микросхем. Эффективность СБ изготовленных из монокристаллического кремния составляет обычно 19-22%. Не так давно, фирма Panasonic заявила о начале промышленного выпуска СБ с эффективностью 24,5% (что вплотную приближается к максимально возможному теоретически значению ~30%).

Во втором случае для производства СБ используется более дешевый кремний произведенный по методу направленной кристаллизации в тигле (block-cast), специально разработанного для производства СБ. Получаемые в результате кремниевые пластины состоят из множества мелких разнонаправленных кристаллитов (типичные размеры 1-10мм) разделенных границами зерен. Подобные неидеальности кристаллической структуры (дефекты) приводят к снижению эффективности – типичные значения эффективности СБ из mc-Si составляют 14-18%. Снижение эффективности данных СБ компенсируется их меньшей ценой, так что цена за один ватт произведенной электроэнергии оказывается примерно одинаковой для солнечных панелей как на основе c-Siтак и mc-Si.

Техническая производительность солнечных батарей

Большинство панелей, применяемых в украинских домашних электростанциях — поликристаллические. Их КПД составляет от 13% до 17%. Для сравнения, в монокристаллических этот показатель равен 18-22%. Огромные потери вызваны тем, что большая часть свет отражается от кремниевых пластин или идет на нагрев самой конструкции.

На уровень преобразования световой энергии влияет и материал модулей. Так, у более дешевых кадмиевых пластин КПД составляет 11%, у фотоэлементов, состоящих из смесей солей галлия, меди, индия и селена (CIGS) — 15%, а у аналогов из органических полимеров — от 5%.

В 2018 году компанией Solliance совместно с Исследовательским центром по энергетике Нидерландов была создана и испытана первая кремниево-перовскитная панель с показателем эффективности 26,3%. В массовое производство пока еще не запущена.

Тем не менее такой показатель считается очень высоким, так как до недавнего времени пределом было 18%. Но, применение новых материалов и фотогальванического стекла сделало этот показатель еще выше.

«Всепогодные» панели

В 2017 году китайские ученые создали так называемые всепогодные солнечные батареи, работающие не только в любую погоду, но и ночью. Секрет разработки в том, что стекло покрытое люминофором длительного послесвечения (LPP), сохраняющем инфракрасный и ультрафиолетовый спектр, невидимый для человеческого глаза. Ночью LPP высвобождает монохроматический свет, и он преобразуется в электроэнергию.

Благодаря такой технологии панель работает круглосуточно.

Еще одно направление для технического совершенствования — сохранение начального уровня преобразования, по сути базового КПД, на протяжении длительного времени. Дело в том, что кремниевые фотоэлементы деградируют и со временем теряют производительность.

Тем не менее этот показатель постоянно растет, и даже появились аналоги, устойчивые к деградации. Но, пока это только экспериментальная технология, она еще не доказала свою эффективность на практике.

Эффективность панелей с «пробегом»

В странах Европы популярный сервис покупки дешевых б/у-шных панелей. Помните, если Вы купите подержанную модель, скорее всего ее номинальная мощность будет ниже заявленной. Для максимальной продуктивности, лучше всё таки новые батареи. Тем более с каждой новой серией, благодаря увеличению КПД, растет номинальная мощность при сохранении размеров.

Как времена года влияют на эффективность

Помимо базового увеличения КПД, выработка батарей возрастает с приходом лета. Длинный летний день по сравнению с зимой в разы увеличивает время работы, а значит и объем выработанного электричества. Но, из-за жары падает номинальная производительность. Например, вместо заявленного КПД 16%, по факту будет 14-15%.

Зимой же наоборот, на квадратный метр площади будет падать меньше света, но уровень переработки достигнет 18-19%.

На этот показатель влияет и наклон. Дело в том, что зимой Солнце находится низко над горизонтом и панель необходимо немного приподнять, а летом — наоборот, опустить. При этом лучше, чтобы панели были повернуты к Солнцу.

Если вы уже читали статью про установку панелей, то знаете, что нет смысла размещать панели с других сторон, кроме как южной, так как там выработка будет минимальной.

Лучший вариант, когда в односкатная крыша направлена на юг и её площади хватает для размещения. В двускатных крышах, расположенных с севера на юг, полезной будет только половина кровли.

Например, Вам необходимо разместить те же 30 панелей общей площадью 48,9 м2. Для этого понадобится приблизительно 50 м2. Даже если у Вас крыша на 150м2, но только 40 м2 из нее «смотрят» на юг, ее не хватит.

Но, даже если весь скат повернут в правильную сторону, это еще не значит что батареи будут работать как часы. Например, если в определенное время суток на панели упадет день от соседнего дерева, снизится общая производительность.

Как увеличить КПД

Что делать, если крыша не подходит для солнечных панелей. Решением такого вопроса станет установка на опору. В отличие от кровли, здесь ничего не ограничивает пространство вокруг панели, что делает возможным ее вращение. А чтобы оно было автоматическим — поставьте поворотный трекер.

Он вращает панели на 360°, одновременно меняя угол и направление. Принцип работы достаточно простой: индикатор определяет место положения Солнца, дает сигнал на электромотор, вращающий трекер и он плавно поворачивает фотоэлементы на него. Вся система автономная и запитана от самой батареи.

Поворотный трекер увеличивает эффективность на 30-40%, но из-за высокой стоимости чаще применяется в промышленных электростанциях, чем домашних.

Сама установка — очень сложный и точный процесс, потому его лучше доверить специалистам. А вот как определиться с каркасом .

Климатический фактор производительности

Эффективность панелей зависит от интенсивности света. Чем лучше освещенность, тем больше мощности будет выработано. Соответственно погодные и климатические условия — не менее весомый фактор, влияющий на продуктивность.

Большинство панелей рассчитаны для работы в температурном режиме от -40°C до +80°C, и чем меньше температура, тем выше уровень преобразования. Стандартной температурой считается +25°C, именно при ней измеряется номинальная мощность. С каждым градусом эффективность теряется или повышается на 0,41%.

Например, если Вы поставили 270-ваттную панель, жарким летом при +35°C ее мощность составит примерно 257Вт, а зимой при -20°C — 298 Вт.

В полярных широтах моментальная эффективность за счет пониженной температуры больше чем на экваторе, но за счет меньшего количества света — в целом эффективность ниже. Поэтому в жарких странах солнечные электростанции более популярны.

Фото: Солнечные панели на британской антарктической исследовательской станции «Принцесса Елизавета»

Фото: Солнечная ферма Топаз, Калифорния, США — самая мощная в мире — (1096 МВт)

Фото: Солнечный парк Перово, Крым — крупнейшая в Европе СЭС — (133 МВт)

Еще на производительность влияет географическое расположение. Так, например, в северных широтах летом длинный день, а зимой — короткая ночь, значит летом СЭС работает дольше и у нее больше выработка. В южном полушарии все с точностью до наоборот.

В Украине, чем южнее будет расположение, тем больше производительность. На карте солнечной инсоляции подана информация, сколько световой энергии получает квадратный метр земли в среднем за год. По ней прослеживаются такие тенденции, что чем дальше на юг, тем чаще там светит Солнце.

В восточной Украине уровень инсоляции выше, чем на западе. Это вызвано скорее климатическими особенностями и близостью западных областей к странам Балтийского региона, где часто формируются зоны низкого давления с частыми осадками.

Чтобы узнать, где выгоднее всего добывать «солнечное» электричество достаточно посмотреть готовую таблицу средней годовой выработки на этой странице, где мы рассчитывали окупаемость солнечной электростанции.

В среднем каждый год в определенном населенном пункте вырабатывается одинаковый объем электроэнергии. Но, в с мая по август батарея работает эффективнее, чем в другие месяцы, а с ноября по февраль — наоборот.

Такую закономерность подтверждают диаграммы исследований влияния времени года на среднюю выработку. Для сравнения и анализа возьмем несколько регионов Украины. В графиках представлен пример СЭС на 10 кВт, наклоненной на 33,5° к Солнцу.

В некоторых областях, как в Киевской, максимальная отдача достигается пару месяцев в году, в остальном нарастает и снижается к зимнему периоду. Практически по всей территории страны наиболее продуктивные 6 месяцев — с мая по август.

Исключения из этой закономерности — Одесская область и Крым, где эффективность сравнительно высокая на протяжении всего года, даже зимой.

Это усредненные результаты, и точно подсчитать невозможно, так на выработку влияет количество облачных и безоблачных дней. Сложно предугадать ясную и безоблачную зиму или дождливое лето. Тем не менее в общем по Украине показатели достаточно высокие.

Как сохранить эффективность солнечных батарей

Большинство бытовых СЭС установлены на крышах домов. Со временем стеклянная поверхность покрывается пылью и опавшим листьям. И если листву время от времени сдувает ветер, то пыль обычно остается там до первого дождя. Чтобы поддерживать эффективную производительность, нужен определенный порядок ухода за поверхностью панелей.

Владислав С.

В первую очередь, нужно обратить внимание на технические параметры солнечного модуля. Основные из них перечислены ниже. Также, нужно проверить качество изготовления и отсутствие визуальных дефектов на солнечных элементах, стекле, защитной пленке и раме солнечного модуля. Если вы можете различить качество пайки — то лучше покупать модули с пайкой роботом, а не ручной.

Как определить, какое напряжение у модулей?

Напряжение модуля равно сумме напряжений солнечных элементов в цепочке

В последние годы на рынке появились модули с нестандартным напряжением, которые предназначены для работы в последовательных высоковольтных цепочках. С легкой руки непрофессиональных продавцов солнечных панелей, — как российских, так и китайских, — появилась путаница с указанием номинального напряжения солнечных модулей. Мы дадим несколько советов, как определить, какое напряжение у солнечной панели.

Различают несколько напряжений, которые указываются в параметрах солнечных панелей.

  1. Напряжение в точке максимальной мощности (ТММ). Это напряжение при работе модуля с максимальной эффективностью, т.е. когда он выдает свою пиковую мощность при стандартных тестовых условиях (STC). Это напряжение указывается в спецификациях модулей и на шильдике. Нужно учитывать, что измерить напряжение ТММ не так просто. Более того, очень часто нагрузка или аккумуляторные батареи заставляют работать солнечный модуль при напряжении, отличном от напряжения ТММ (обычно на несколько вольт ниже).
    Номинальная мощность равна произведению напряжения в ТММ на ток в ТММ.
  2. Напряжение холостого хода. Напряжение холостого хода измеряется на клеммах солнечной панели без нагрузки, т.е. когда ток равен нулю. Это напряжение указывается в спецификациях на солнечных модуль, а также на его шильдике. Напряжение холостого хода важно для определения максимально возможного напряжения, которое может выдавать модуль и солнечная батарея, собранная из нескольких модулей. Используя коэффициент температурной коррекции напряжения можно вычислить максимально возможное напряжение солнечного модуля при низкой температуре. Это напряжение не должно превышать максимально допустимого напряжения контроллера или инвертора.
  3. Номинальное напряжение. Это напряжение используется для классификации и различения модулей. Этот параметр пришел к нам со времен, когда солнечные панели использовались только для заряда аккумуляторных батарей. Это напряжение сейчас не указывается в спецификациях и на шильдике солнечной панели. Параметр номинального напряжения был введен для облегчения подбора солнечных панелей к аккумуляторам. Например, 12В аккумуляторы нужно зарядать солнечной панелью с номинальным напряжением 12В, а 24В АБ — солнечной панелью с номинальным напряжением 24В.
    Здесь ситуация аналогичная напряжениям, указываемым для аккумуляторов. Как известно, для заряда АБ номинальным напряжением 12В нужно зарядное устройство с напряжением примерно до 15В. Поэтому 12В солнечная панель должна выдавать такое напряжение при различной температуре.
    Поэтому, даже несмотря на то, что напряжение в ТММ солнечной панели равно 17В, она будет заряжать АБ при 14В, а инвертор питать при 10-15В, но все эти элементы будут иметь номинальное напряжение 12В. Таким образом, для потребителя облегчается задача подбора оборудования, совместимого друг с другом.
    Такой подход прекрасно работал до появления MPPT контроллеров и сетевых фотоэлектрических инверторов. Не все солнечные батареи теперь используются для заряда аккумуляторов, и даже для АБ необязательно иметь СБ с номинальным напряжением 12В. Технология MPPT (поиска максимальной мощности солнечной батареи) позволяет «отвязать» напряжение СБ от номинальных напряжений инвертора и аккумулятора.
    Сетевые инверторы и MPPT контроллеры позволили производителям солнечных панелей ориентироваться на размер панелей и их мощность, а не на напряжение. Так появились модули, напряжение которых совершенно не связано с напряжениями на аккумуляторах.

Напряжение солнечной панели определяется количеством солнечных элементов, соединенных последовательно. Каждый солнечный элемент имеет рабочее напряжение чуть менее полувольта. В настоящее время есть модули с количеством элементов 36,48, 54, 60, 72 и 96. Наиболее распространены модули с количеством элементов 36, 60 и 72. На 48, 54 и 96 элементов встречаются гораздо реже. В таблице ниже приведены основные напряжения этих солнечных панелей.

Параметр Количество элементов в модуле
36 48 60 72 96
Номинальное напряжение, В 12 16 20 24 32
Напряжение в ТММ1, В 17-19 23-25 29-31 33-36 47-50
Напряжение холостого хода, В 21-22 29-30 37-39 42-45 57-60
Напряжение заряжаемых аккумуляторов2, В 12 24

1ТММ — точка максимальной мощности
2имеется ввиду возможность заряда при соединении к аккумулятору напрямую или через ШИМ контроллер. Остальные модули можно использовать для заряда аккумуляторов, но при обязательном наличии MPPT контроллера.

При покупке модулей для автономной системы с аккумуляторами обращайте внимание на напряжение модуля. В последнее время массово производятся модули высокой мощности (220-270 ватт) с нестандартным номинальным напряжением 20В (с 60 солнечными элементами). Такие модули обычно используются совместно с сетевыми фотоэлектрическими инверторами или с MPPT контроллерами заряда. Если вы хотите удешевить систему за счет менее дорогого ШИМ контроллера, выбирайте модули с номинальным напряжением 12 В или 24 В (соответственно с 36 и 72 солнечными элементами в цепочке).

Температурная коррекция напряжения

Напряжение при возможных низких рабочих температурах модуля важно знать, для того, чтобы правильно подобрать солнечный контроллер или инвертор. Как известно, напряжение солнечной батареи растет при понижении температуры. Температурный коэффициент обычно указывается в спецификациях солнечного модуля.

На что обращать внимание при выборе солнечных модулей для вашей системы солнечного электроснабжения?

Цена против качества

Кроме того, что не все производители и солнечные модули одинаковы (это обсуждается в соответствующей статье, посвященной качеству солнечных элементов), есть еще ряд параметров и факторов, на которые следует обратить внимание при принятии решения о покупке и при выборе поставщика. Только лишь цена на модули не должна быть определяющим фактором.

Проблемы и ухудшение параметров солнечных модулей может быть вызвано следующими факторами:

  • Качество солнечного элемента — его эффективность может быть разной. Это зависит от множества его параметров — шунтового и последовательного сопротивлений, шумовых токов, обратного сопротивления и т.д. Многое зависит от качества производства солнечного элемента и качества применяемых при его производстве материалов и оборудования. Известны проблемы практически на каждом этапе производства элемента — начиная от качества применённого кремния, до качества применяемых контактных паст и припоя. Мы в данной статье не будем рассматривать эти проблемы, это предмет для отдельной большой статьи.
  • Качество пайки солнечных элементов. При некачественной пайке возможен локальный перегрев контакта и его прогорание. Лучше выбирать модули, в которых элементы спаяны роботом — в них разброс качества пайки будет минимальным
  • Качество EVA пленки, которая расположена между элементами и стеклом. Старение кристаллических солнечных модулей в основном связано со старением и помутнением этой пленки. Некачественная пленка может начать мутнеть и разрушаться уже через несколько лет. Хорошая пленка будет служить 30 и более лет, при этом ее помутнение (и, следовательно, потеря мощности модулем) не будет превышать 25-30%
  • Качество герметизации модуля и качество задней защитной пленки. Задняя пленка защищает модуль от попадания влаги. В любом модуле происходит диффузия влаги через пленку. Если качество пленки хорошее, то вся влага, которая попадает внутрь модуля, при его нагревании на солнце, выводится наружу. Если же пленка некачественная, то влаги попадает больше, чем может выйти при нагреве, остаточная влага накапливается внутри модуля и разрушает контакты и контактную сетку элементов. Это приводит к преждевременному выходу модуля из строя.
  • В последнее время появились солнечные модули с двойным стеклом, т.е. вместо задней защитной пленки применено стекло. Такие модули имеют ряд преимуществ. Подробнее об этих модулях можете прочитать в статье про DoubleGlass модули.
  • Качество алюминиевой рамы. Здесь все понятно: некачественное анодирование может приводить к окислению рамки и ее коррозии. К счастью, этот дефект больше визуальный и вряд ли приводит к преждевременному выходу модуля из строя. Хотя, в некоторых случаях (например, при установке модулей на мачтах, где возможны сильные ветровые нагрузки или там, где среда агрессивная) ускоренная коррозия металла может приводить к его разрушению под нагрузками.

Толеранс

Под толерансом подразумевается отклонение реальной мощности модуля от паспортной. Толеранс может быть как положительным, так и отрицательным. Например, модуль c паспортной мощностью 200 Вт может иметь мощность 195Вт; это будет означать, что данный модуль имеет отрицательный толеранс. Положительный толеранс означает, что солнечная панель не только гарантированно будет иметь при стандартных тестовых условиях выходную мощность 200Вт, но и даже больше. Про важность этого параметра читайте в наших «8 Правилах по выбору солнечной батареи»

Температурный коэффициент

Температурный коэффициент отражает, какое влияние на выходные ток и напряжение модуля будет иметь повышение или понижение температуры модуля. Как известно, напряжение и мощность модуля при повышении температуры уменьшаются, а ток повышается. Чем меньше температурный коэффициент изменения мощности, тем лучше.

Эффективность преобразования солнечного света

C этим понятно — чем больше КПД, тем меньшая площадь модулей потребуется для генерации одинаковой мощности и энергии.

Общее количество энергии, затраченной при производстве модуля

Еще один параметр, на который нужно обращать внимание — общее количество энергии, которое может было затрачено при производстве солнечного модуля — от добычи кремния до доставки до магазина готовой продукции. Этот параметр отражает, насколько энергоемким было производство модуля и насколько быстро солнечный модуль выработает такое же количество энергии, какое было потрачено на его производство (так называемая окупаемость о энергии).

Срок службы и гарантии

Заявленный срок службы солнечной панели важен по нескольким причинам. Он может отражать уверенность производителя в качестве произведенной продукции. Солидные производители имеют гарантию 25 лет на 80-90% мощности модуля, а также 5 и более лет на механические повреждения.

Однако, нужно учитывать, что гарантия действует до тех пор, пока существует производитель или импортер. Здесь уже «как карта ляжет» — в последние годы из солнечного бизнеса ушли компании, которые, казалось, будут в нем еще очень долго. Но тем не менее, общее правило остается — покупайте у продавцов и производителей, которые давно на рынке и устойчиво «плывут» в бурном потоке рынка. А это сделать можно только, если в команде профессионалы (это мы скромно так на себя намекаем 🙂 ). Так как мало кто покупает модули напрямую от производителя, важно правильно выбрать продавца или установщика, которые обеспечат вам правильный выбор и режимы работы вашей системы солнечного электроснабжения.

Размеры и мощность

Стоимость модуля зависит от его мощности прямо пропорционально. Однако, чем больше единичная мощность модуля, тем меньше будет его стоимость за ватт. Поэтому, если вам нужна определенная мощность, то лучше ее набрать большими модулями, чем маленькими — это будет и дешевле, и надежнее, т.к. у вас будет меньше соединений. Также, стоимость за ватт модулей со стандартным напряжением 12/24В (количество элементов в модуле 36 или 72) обычно выше, чем с нестандартным количеством элементов в модуле 48, 54 или 60. Для последних при заряде аккумуляторов нужен более дорогой MPPT контроллер.

Тип солнечных элементов, примененных в модуле, также определяет его размер. Поэтому сначала посчитайте, какая мощность вам нужна для снабжения энергией вашей нагрузки, потом посмотрите, хватит ли вам места для размещения такого количества модулей. Может потребоваться выбрать более дорогие, но более эффективные модули, для того, чтобы обеспечить все ваши потребности в энергии. Не забывайте, кстати, что перед проектированием системы солнечного электроснабжения нужно принять все возможные меры по энергосбережению (об этом уже писалось на других страницах нашего сайта).

Пиковая мощность всех модулей измерена при стандартных тестовых условиях:
Масса воздуха AM=1.5, радиация E=1000 Вт/м2 и температура фотоэлектрического элемента Tc=25°C. Такие условия при реальной работе модулей не существуют — модули нагреваются обычно до 40-60 градусов, освещенность почти всегда ниже 1000 Вт/м2 (исключение составляют морозные ясные дни). Поэтому многие производители также дают характеристики модулей при NOCT (normal operation conditions) — обычно для температуры модуля 45-47С и освещенности 800 Вт/м2, при этом выработка модулей примерно на 25-30% ниже пиковой. В морозный ясный день выработка модулей может доходить до 125% от пиковой.

Тип солнечных элементов — монокристаллические, поликристаллические, аморфные и др.

Основные типы солнечных элементов, которые сейчас массово продаются на рынке ( первые 3 кремниевые, которые составляют львиную долю рынка), следующие:

  • монокристалллические. Имеют наибольшую эффективность и удовлетворительные температурные коэффициенты
  • поликристаллические. В настоящее время наиболее популярные, т.к. имеют меньшую стоимость за ватт при примерно таких же характеристиках, как монокристалллические. Последние улучшения в технологии поликристаллических модулей брендовых производителей привели к тому, что их параметры могут быть даже лучше, чем у монокристаллических модулей noname производителей/сборщиков панелей.
  • аморфные (тонкопленочные). Используют наименьшее количество кремния. Имеют примерно в 2 раза меньший КПД по сравнению с кристаллическими модулями. К преимуществам можно отнести низкий температурных коэффициент (т.е. при нагревании мощность таких модулей падает незначительно) и большую чувствительность при низких освещенностях.
  • CIGs — тонкопленочные модули из кадмий-индий-галлий теллурида. Многообещающая технология, но массового распространения пока не получила. Делают таки модули всего несколько производителей, и цен на них за ватт обычно выше, чем на массово выпускаемые модули из кристаллического кремния

В последние годы появились солнечные модули, изготовленные с применение новых технологий: PERC, гетероструктурные и т.п. Они имеют больший КПД и улучшенную эффективность. Пока их стоимость превышает стоимость стандартных кристаллических модулей с токосъемными шинами, но технология совершенствуется и рынок постепенно переходит на новые типы модулей, цена которых снижается.

Какие же модули, из перечисленных выше, работают лучше? В последнее время появилось много мифов и необоснованных заявлений насчет того, что какой-то из этих типов модулей работает лучше, чем другие. Некоторые уверяют, что поликристаллические элементы лучше работают при низкой освещенности и в пасмурную погоду. Другие утверждают то же самое, но для монокристаллических элементов. Я даже слышал версию, что поликристаллические элементы лучше преобразуют рассеянный свет, потому что кристаллы в них «повернуты в разные стороны». На тему «что лучше — моно или поли» у нас есть специальная статья.

Анализ результатов тестирования сотен модулей показывает, что модуль хорош не тот, который моно или поли, а тот, который сделан качественно. Результаты тестирования модулей по PTC (которые ближе к реальным условиям эксплуатации модулей) показывают, что некоторые монокристаллические лучше, чем некоторые поликристаллические, а некоторые поликристаллические лучше чем некоторые монокристаллические. Этот факт также подтверждают многочисленные результаты сравнений модулей конечными пользователями — можно найти как «доказательства» преимуществ моно перед поли, так и преимуществ поли перед моно. Однако большинство монокристаллических модулей немного лучше работают при нагреве — это подтверждает анализ большого количества данных по PTC мощности солнечных модулей различных производителей. Для иллюстрации этого факта мы провели сравнили мощности монокристаллических и поликристаллических модулей одних и тех же производителей (см. таблицу).

Что является фактами, так это следующее:

  1. Монокристаллические модули обычно имеют бОльший КПД при STC, т.е. можно получить больше мощности с единицы площади солнечной батареи при ярком солнце.
  2. Монокристаллические модули имеют меньшую деградацию со временем.
  3. Монокристаллические модули дороже за ватт.
  4. На эффективность стандартных модулей в общем случае влияет количество токосъемных шин. Чем их больше, тем лучше работают солнечные элементы. Солнечные элементы с 3 шинами (busbars) постепенно вытеснены элементами с 4 шинами, а в последнее время появились модули и с 5BB. Эффективность их выше, чем у элементов с 3 или 4 шинами, но сравнивать при этом нужно элементы производителей одинакового уровня. Хороший (брендовый, Tier1) производитель делает модули с 3BB элементами лучше, чем noname или Tier3 c 4BB или 5BB.
  5. Солнечные элементы, изготовленные по новой технологии (PERC, гетероструктурные и др.) имеют КПД примерно на 10-15% выше. Т.е. в размере стандартного 250-260Вт модуля можно получить до 320Вт. Такие модули выпускают, например, российский Хевел или китайский Seraphim

Так что еще раз повторим — если хотите получить модули с прогнозируемыми параметрами — покупайте брендовые, с указанием реального производителя. Этот производитель должен быть в списке протестированных независимыми лабораториями или рекомендован независимыми агентствами. Мы уже давали ссылки на статью в журнале PV magazine со списком рекомендованных китайским правительством производителей для фотоэлектрических проектов в Китае. Вот еще одна ссылка — тесты калифорнийского агентства California Energy Commission, где приведены данные по большому количеству протестированных независимыми лабораториями модулей. В Европе также проводятся независимые тестирования солнечных панелей. Самая известная лаборатория — TUV — также имеет базу данных солнечных панелей различных производителей, поищите предлагаемый вам модуль в этой базе.

Если в этих списках есть производитель предлагаемых вам модулей — это уже хорошо. Вы можете получить по ним данные независимымых измерений, а не только заявленные продавцами или производителями параметры. Мелкие, «коленочные» производители обычно не попадают в такие списки. Модулей ФСМ и многих прочих продаваемых в России под собственными брендами китайских модулей, как вы можете догадаться, там нет. К сожалению, нет там и производимых в России модулей — для зрелых рынков США и Европы российская продукция не представляет интереса. Поэтому, определить реальные параметры российских солнечных модулей пока нет возможности.

Эта статья прочитана 21162 раз(а)!

Какие преимущества дает солнечная электростанция для дома?

Для того, чтобы оборудовать свой участок полноценной солнечной электростанцией, необходимы определенные финансовые вложения. Однако, подобные затраты правильнее рассматривать как инвестицию в будущее — со временем система полностью себя окупает и дает хозяину многочисленные преимущества:

  • Автономность
  • Независимость от веерных отключений
  • Отсутствие скачков напряжения, приводящих к порче домашней электротехники
  • Не нужно платить за энергоснабжение
  • Ресурс неисчерпаем
  • Бесшумность
  • Высокая надежность
  • Экологичность

В том случае, если домашняя солнечная электростанция позволяет вырабатывать электричества больше, чем в хозяйстве потребляется, существует возможность продавать электроэнергию, полученную из возобновляемых источников, государству. Т.к. в зимний период выработка электроэнергии от солнца минимальна, прибыль, полученная от продажи избыточной энергии в летний сезон, покрывает все расходы.

Использование солнечной энергии для получения тепла

Наряду с использованием солнечной энергии для производства электрического тока существуют и не менее распространенные устройства по превращению энергии солнечного света в тепловую энергию. Такие установки называются солнечными коллекторами и служат элементами нагрева для систем отопления и получения горячей воды. Независимо от установленных котлов в отопительных системах и контурах горячего водоснабжения, их комбинация с высокоэффективными солнечными коллекторами позволяет экономить до 36% расходов на отопление и приготовление горячей воды.

Электроснабжение дома с использованием солнечных батарей: 1 — LED-светильники, 2 — электровентилятор, 3 — зарядное устройство для телефона, 4 — маленькая электроплита, 5 — холодильник, 6 — внешнее освещение, А — солнечные фотоэлектрические панели, В — панель управления, С — инвертор + контроллер зарядки + счетчики, D — аккумуляторы, Е — панель обесточивания (отключения), F — резервный генератор

В конструктивном исполнении солнечный коллектор из разряда ходового товара представляет собой прямоугольную панель с габаритами ориентировочно 1х2 м и с толщиной до 100 мм. Главным отличием коллекторов указанных типоразмеров является тепловой поток мощности, т.е. количество тепла, которое может передаться любому жидкому теплоносителю через контактную поверхность. По-другому этот параметр называют коэффициентом потери тепла и который имеет размерность Вт/м²×°К, т.е. передаваемое тепло через площадь для повышения температуры принимающей жидкости. Современные конструкции солнечных коллекторов имеют показатели (одна панель) по тепловой мощности от 1,2 до 5 Вт/м²×°К.

Цены солнечных коллекторов для отопления дома

Главным элементом системы (теплостанции) является панель солнечного коллектора. В зависимости от требуемой мощности ее можно приобрести на рынке по цене 18-20 тыс. руб. за 1 м² полезной площади и среднему коэффициенту потери тепла 2,5-2,7 Вт/м²×°К.

Например, панель европейского качества с габаритами 1,9х1,8 м (площадь 3,5 м²) и с коэффициентом 2,7 будет стоить около 70 тыс. руб.

С учетом конкуренции аналог китайского производства может быть дешевле на 30-55%, а отечественный прототип на 10-25%.

Если говорить о требуемом комплекте, в который входят: бак, аккумулятор, насос и автоматика, тогда среднерыночная цена такой станции составит 160-170 тыс. руб. Комплект отечественного производства с аналогичными параметрами обойдется в 100-120 тыс. руб.

Монтаж солнечных коллекторов на крышу дома

Полезный совет! Совместное использование солнечных коллекторов с солнечными батареями при правильном выборе параметров позволяет снизить расходы тепловой энергии на получение горячей воды до 61%.

Обзор производителей. Солнечные батареи для дома: стоимость комплекта и одной панели

Солнечные технологии как альтернативные источники энергии уверенно заняли передовые позиции на рынке. Большое количество производителей активно конкурирует, предлагая все новые и новые инновации. Лидирующее место в объемах продаж ТОР-15 стран солнечных электростанций и их комплектующих занимает Китай, имея более 50%.

Наиболее популярными брендами являются Еxmork, RENE SOLA, LDK, Helios House, Suntech, JA Solar и др.

Европейских производителей с объемом рынка около 25% представляют такие компании, как германские AXITEC GmbH, Solarworld и Viessmann Group и норвежская Renewable Energy Corporation и др.

Стоимость солнечной панели мощностью 200 Вт составит от 10 до 25 тыс. рублей

Японию, Корею и Тайвань (15%) представляют компании Kyocera, Sharp, Sanyo, Hanwha Solar One и Motech.

Отечественная продукция представлена такими компаниями, как Hevel Solar и ТСМ. Американский производитель – компания First Solar.

Купить солнечные батареи для дома можно относительно недорого. Если взять за потребительский образец солнечную панель мощностью 200 Вт, то ценовой ряд будет в пределах:

Страна-производитель Цена солнечной панели 200 Вт, руб. Цена комплекта солнечной станции 2 кВт, руб.
Китай 8000-16000 120000-160000
Европа 15000-17000 190000-250000
Азия 10000-15000 140000-190000
Россия 12000-20000 104000-240000
США 27000 380000

Чтобы увидеть разницу в ценовой политике, в основном зависящей от показателя мощности, возьмем для примера солнечную электростанцию для дома 5 кВт, цена которой в китайском исполнении составит:

  • около 300 тыс. руб. (солнечная батарея);
  • около 420 тыс. руб. (весь комплект).

Комплект солнечной автономной системы для освещения дома

Качество продаж и перспективы развития солнечных технологий

Современны рынок и его технологии продаж не оставляют у покупателя однозначной оценки. Особенно высокотехнологическое оборудование и устройства. Это касается и рынка по продаже солнечных систем электроснабжения. Так как технологии производства сами по себе очень энергоемкие, то при желании приобрести солнечные батареи или купить солнечную электростанцию для дома, цена в обоих случаях будет призывать к детальному анализу не только по техническим и технологическим особенностям, но и по экономическим обоснованиям.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *