admin / 05.06.2020

Как считается темп роста в процентах формула. Средние показатели в рядах динамики

Темп прироста — один из динамических, то есть изменяющихся показателей экономической системы. Для расчёта показателей динамики нужно установить базисный уровень — то есть тот, с которым будут сравниваться все дальнейшие показатели.

В экономике часто используют принцип переменной базы. Это означает, что каждый следующий показатель сравнивают с предыдущим. Чтобы понять, как рассчитать темп прироста, необходимо уметь рассчитывать базовые показатели.

Быстрая навигация по статье

Абсолютный прирост

Прежде всего, нам понадобится такое понятие как абсолютный прирост. Рассчитать абсолютный прирост довольно просто: для этого вычисляют разницу между последними экономическими показателями и предыдущими.

Например, если выбранный показатель в отчётном периоде составил Х рублей, а в предыдущем отчётном периоде У рублей, то абсолютный прирост составит Х-У рублей.

Абсолютный прирост бывает положительный или отрицательный. По этому показателю сразу можно увидеть увеличение или уменьшение выбранного показателя за выбранный период.

Темп прироста

Темп прироста свидетельствует об относительном приросте. Это величина относительная и вычисляется в процентах или долях, как коэффициент прироста. Для того чтобы рассчитать для выбранного показателя темп прироста, нужно абсолютный прирост за выбранный период разделить на показатель за начальный период. Полученную величину умножаем на 100 для получения процентного отношения.

Рассмотрим уже приведённый пример:

  • За отчётный период выручка — Х рублей, а за предыдущий — У рублей.
  • Абсолютный прирост составляет Х-У.
  • Темп прироста теперь можно рассчитать по имеющимся данным: (Х-У)/Y *100. Этот показатель тоже может быть и положительным, и отрицательным.

Чтобы рассчитать темп прироста за весь период, нужно выбрать исходный, базовый уровень (например, год образования фирмы). Тогда абсолютный прирост рассчитывают как разность между показателями последнего года и первого года. Разделив эту разность на показатель первого года, можно рассчитать темп прироста за весь период.

Динамические показатели экономической системы показывают её дееспособность и выгодность. Одним из таких показателей является темп прироста, который показывает процентное отношение прироста показателей.

Инструкция

Темпы роста выражаются в процентах. Если мы будем рассчитывать среднегодовой темп роста, рассматриваемый анализируемый период составит с 1 января по 31 декабря. Он совпадает не только с календарным, но и с обычно учитываемым финансовым годом. Удобнее всего принять значение базового показателя, для которого будут определяться темпы роста за 100%. Его значение в абсолютных показателях должно быть известно на 1 января.

Определите абсолютные значения показателей на конец каждого месяца года (АПi). Рассчитайте абсолютные значения прироста показателей (Пi) как разницу двух сравниваемых , одним из которых будет базисное значение показателей на 1 января (По), вторым – значения показателей на конец каждого месяца (Пi):

АПi = По – Пi,

таких абсолютных значений ежемесячного прироста у вас должно получиться двенадцать, по числу месяцев.

Сложите все абсолютные значения прироста за каждый месяц и полученную сумму разделите на двенадцать – количество месяцев в году. Вы получите среднегодовое значение прироста показателей в абсолютных единицах (П):

П = (АП1 + АП2 + АП3 +…+ АП11 + АП12) / 12.

Определите среднегодовой базисный коэффициент роста Кб:

Кб = П / По, где

По — значение показателя базового периода.

Выразите среднегодовой базисный коэффициент роста в процентах и вы получите значение среднегодового темпа роста (ТРсг):

ТРсг = Кб * 100%.

Используя показатели среднегодовых темпов роста за несколько лет, вы можете проследить интенсивность их изменения за рассматриваемый долгосрочный период и использовать полученные значения для анализа и прогноза развития ситуации , промышленности, финансовой сфере.

Полезный совет

В аналитических расчетах одинаково часто используются и коэффициенты, и темпы роста. Они имеют идентичную суть, но выражаются в различных единицах измерения.

  • темп роста бизнеса
  • Рассчитаем среднегодовые темп роста

Для определения интенсивности изменений каких-либо показателей за определенный период времени используется набор характеристик, которые получаются методом сравнения нескольких уровней показателей, измеренных на разных отметках временной шкалы. В зависимости от того, каким образом сравниваются измеренные показатели между собой, полученные характеристики называются коэффициентом роста, темпом роста, темпом прироста, абсолютным приростом или абсолютным значением 1% прироста.

Инструкция

Определите, какие именно показатели и каким образом надо сравнивать между собой, чтобы искомое значение абсолютного прироста. Исходите из того, что эта должна показывать абсолютную скорость изменения исследуемого и рассчитываться как разность между текущим уровнем и уровнем, принимаемым за .

Вычтите из текущего значения исследуемого показателя его значение, измеренное в той точке временной шкалы, которая принимается за базовую. Например, допустим, что количество рабочих, занятых на производстве на начало текущего месяца составляет 1549 человек, а на начало года, которое считается базисным периодом, оно было равно 1200 работникам. В этом случае за период с начала года по начало текущего месяца составил 349 единиц, так как 1549-1200=349.

Если требуется не только этот показатель за один последний период, но и определить среднее значение абсолютного прироста за несколько периодов, то надо вычислить это значение для каждой временной отметки по отношению к предыдущей, затем сложить полученные величины и разделить их на количество периодов. Например, допустим, что нужно вычислить среднее значение абсолютного прироста количества занятого на производстве по текущего года. В этом случае отнимите от значения показателя по состоянию на начало февраля, соответствующее значение для начала января, затем проделайте аналогичные операции для пар март/ , /март и т.д. Закончив с этим, сложите полученные значения и разделите результат на порядковый номер последнего из участвовавших в расчете месяцев текущего года.

Термин «темп роста » используется в промышленности, экономике, финансах. Это статистическая величина, позволяющая проанализировать динамику происходящих процессов, скорость и интенсивность развития того или иного явления. Для определения темп ов роста необходимо сравнить значения, полученные через определенные промежутки времени.

Инструкция

Определите период времени, за который вам необходимо

Темпы роста − это отношение уровней ряда одного периода к другому.

Темпы роста могут быть вычислены как базисные, когда все уровни ряда относятся к уровню одного и того же периода, принятому за базу:

Т р = y i /y 0 − базисный темп роста

и как цепные,- это отношение каждого уровня ряда к уровню предыдущего периода:

Т р = y i /y i-1 − цепной темп роста.

Темпы роста могут быть выражены коэффициентом или процентом.

Базисные темпы роста характеризуют непрерывную линию развития, а цепные − интенсивность развития в каждом отдельном периоде, причём произведение цепных темпов равно темпу базисному. А частное от деления базисных темпов равно промежуточному цепному.

8.3 Прирост и темп прироста. Абсолютное значение 1% прироста.

Различают понятие абсолютного и относительного прироста. Абсолютный прирост вычисляют как разность уровней ряда и выражают в единицах измерения показателей ряда.

Если из последующего уровня вычитается предыдущий, то мы имеем цепной абсолютный прирост:

Если из каждого уровня вычитается один и тот же уровень − базисный, то это базисный абсолютный прирост:

Между цепными и базисными абсолютными приростами существует следующая взаимосвязь: сумма последовательных цепных приростов равна соответствующему базисному приросту, характеризующему общий прирост за весь соответствующий период времени.

Относительную оценку значения абсолютного прироста по сравнению с первоначальным уровнем дают показатели темпа прироста (Т ∆ i ). Его определяют двумя способами:

    Как отношение абсолютного прироста (цепного) к предыдущему уровню:

Это цепной темп прироста.

Как отношение базисного абсолютного прироста к базисному уровню:

Это базисный темп прироста.

2 Как разницу между темпом роста и единицей, если темп роста выражен коэффициентом:

Т ∆ = Т р -1, или

Т ∆ = Т р — 100, если темп роста выражен в процентах.

Темп прироста показывает, на сколько процентов увеличились размеры явления за изучаемый период. Если темп прироста имеет знак минус, то говорят о темпах снижения.

Абсолютное значение 1-го процента прироста равно отношению абсолютного прироста (цепного) к цепному темпу прироста, выраженному в процентах:

А i = 0,01хУ i ;

8.4 Вычисление средних показателей динамики

Средний уровень ряда называется средней хронологической.

Средняя хронологическая − это средняя величина из показателей, изменяющихся во времени.

В интервальном ряду с равными интервалами средний уровень ряда определяется по формуле простой средней арифметической.

Средний уровень ряда в интервальном ряду динамики требует, чтобы было указано, за какой период времени он вычислен (среднемесячный, среднегодовой и т.д.).

Пример 1

Вычислить среднемесячный товарооборот за первый квартал.

Т.к. нам дан интервальный ряд с равными интервалами, применим формулу простой средней арифметической:

Если интервальный ряд имеет разные интервалы , то его вначале нужно привести к ряду с равными интервалами, а затем можно будет использовать формулу простой средней арифметической.

Пример 2 Имеются следующие данные о товарообороте, ден.ед.:

Так как показатели моментных рядов не обладают свойством суммарности, то среднюю нельзя вычислить, применяя формулу простой средней арифметической, в связи с тем, что остатки менялись непрерывно в течение месяца, а данные приводятся на определённый день.

Поэтому мы воспользуемся приближенным методом, основанным на предположении, что изучаемое явление менялось равномерно в течение каждого месяца. Чем короче будет интервал ряда, тем меньше ошибка будет допущена при использовании этого допущения.

Получим формулу:

Эта формула применяется для вычисления среднего уровня в моментных рядах с равными интервалами.

Пример 3 Имеются данные об остатках строительных материалов на начало месяца, ден. ед.:

Определить средний остаток за 1-й квартал.

.

Если интервалы в моментных рядах не равны , то средний уровень ряда вычисляется по формуле:

где — средний уровень в интервалах между датами,

t — период времени (интервал ряда)

Пример 4 Имеются данные об остатках сырья и материалов, ден. ед

Найти среднемесячные остатки сырья и материалов за первое полугодие.

Применяем формулу:

Средний абсолютный прирост вычисляется двумя способами:

1 Как средняя арифметическая простая годовых (цепных) приростов, т.е.

2 Как частное от деления базисного прироста к числу периодов:

Расчет среднего абсолютного значения 1% прироста за несколько лет производится по формуле простой средней арифметической:

При вычислении среднегодового темпа роста нельзя применять простую среднюю арифметическую, т.к. сумма годовых темпов не будет иметь смысла. В этом случае применяют среднюю геометрическую, т.е.:

где Тр i − годовые цепные темпы роста;

n − число темпов.

Поскольку произведение цепных темпов равно темпу базисному, то средний темп роста может быть рассчитан следующим образом:

Error: Reference source not found

При расчёте по этой формуле не обязательно знать годовые темпы роста. Величина среднего темпа будет зависеть от соотношения начального и конечного уровня ряда.

Пример 5 Номинальная заработная плата работников народного хозяйства Республики Беларусь характеризуется данными, представленными в таблице 1.

Таблица 1 – Номинальная заработная плата работников народного хозяйства Республике Беларусь

Для анализа динамики заработной платы определить:

    среднегодовой размер заработной платы за 8 лет;

    ежегодные и базисные абсолютные приросты, темпы роста и прироста заработной платы;

    абсолютное значение 1% прироста;

    среднегодовой абсолютный прирост;

    среднегодовой темп роста и среднегодовой темп прироста;

    среднее значение 1% прироста.

Результаты представить в таблице, сделать выводы.

Решение

1 Среднегодовой размер заработной платы определим по формуле средней арифметической простой

2 Ежегодный (цепной) абсолютный прирост () определим по формуле

где ,– значение показателя соответственно в-м периоде и предшествующем ему.

Базисный абсолютный прирост () определим по формуле

где ,– значение показателя соответственно в-м и базисном (2004 год) периоде.

Цепной темп роста определим по формуле

Например, для 2005 года , т. е. заработная плата в 2001 году по сравнению с 2004 годом выросла на 108,8%; для 2006 годаи т. д.

Базисный темп роста определим по формуле

Например, для 2001 года ; для 2002 года, т. е. заработная плата в 2002 году по сравнению с 2000 годом выросла на 221,2% и т. д.

Темп прироста найдем по формуле

Так, цепной темп прироста

за 2005 год: ;

за 2006 год: .

Базисный темп прироста

за 2005 год: ;

за 2006 год: .

3 Абсолютное значение 1% прироста () найдем по формуле

Этот показатель можно также вычислить как одну сотую часть предыдущего уровня:

Например, для 2005 года тыс. р.; для 2006 годатыс. р.

Расчеты показателей по пунктам 1, 2, 3 оформим в таблице 2

Таблица 2 – Показатели динамики заработной платы за 2004-2011 гг.

Казалось бы, чем могут отличаться темпы роста и прироста, ведь это однокоренные слова, которые, вероятнее всего, обозначают одно и то же явление? Но, как бы ни могло показаться на первый взгляд, это два экономических показателя, которые, хотя и связаны между собой, все же имеют разное назначение и метод определения. Чтобы понять, в чем их отличительные особенности, необходимо ознакомиться с их экономической сущностью.

Определение

Темп роста призван показать, сколько процентов составляет один показатель от другого, то есть с его помощью можно сравнить исследуемый показатель с базисным или предыдущим значением. Если полученное значение меньше 100%, то наблюдается темп уменьшения исследуемого показателя в соотношении с базисным или предыдущим.

Темп прироста показывает, на сколько процентов увеличился или уменьшился тот либо иной показатель по сравнению с базисным или предыдущим значением. Если полученный результат имеет отрицательное значение, то наблюдается не темп прироста, а темп снижения анализируемого показателя по сравнению с базисным или предыдущим значением.

Сравнение

Самое главное различие заключается в их методе расчета, поскольку для них используются неодинаковые формулы. Так, чтобы рассчитать темп роста, необходимо найти отношение исследуемого значения к предыдущему или базисному, а затем умножить его на 100%, поскольку этот показатель измеряется в процентах. И тогда вывод будет звучать следующим образом: показатель А по сравнению с показателем Б составил Х %.

Чтобы рассчитать темп прироста, необходимо использовать ту же самую формулу, только вычесть из нее 100%. Кроме того, формула будет выглядеть проще, если из темпа роста вычесть 100%. В этом случае можно узнать, на сколько именно процентов изменился исследуемый показатель. Вывод по этой формуле будет звучать следующим образом: показатель А больше показателя Б на Х %.

Выводы сайт

  1. Темп роста показывает, сколько процентов составляет один показатель от другого, а темп прироста показывает, на сколько процентов один показатель отличается от другого.
  2. Темп роста можно использовать для расчета темпа прироста, а наоборот – нельзя.
  3. Если наблюдается не темп роста, а его противоположность, то значение результата будет меньше 100%; если же наблюдается не темп прироста, а темп снижения, то значение результативного показателя будет отрицательным.

Тема 5. Методы изучения динамики социально-экономических явлений

    Понятие рядов динамики, их вид и основные элементы.

    Система характеристик динамического ряда.

    Средние уровни ряда и приемы их исчисления.

    Понятие рядов динамики, их вид и основные элементы

Для характеристики и анализа социально-экономических явлений за некоторый период применяют показатели и методы, характеризующие эти процессы во времени (динамике).

Процесс развития, движения социально-экономических явлений во времени называется динамикой.

Ряды динамики – ряды последовательно расположенных статистических показателей, характеризующих состояние и изменение явлений во времени.

Любой ряд динамики состоит из двух элементов:

1) уровень ряда, под которым понимается значение статистического показателя, относящееся к определенному моменту или периоду времени;

2) период времени — это моменты или периоды времени, к которым относятся числовые значения показателей (год, квартал, месяц и т. д.).

Каждый ряд динамики может быть представлен в табличной форме — в виде пар значений и ; и в графической форме — в виде линейной диаграммы.

При обработке статистических данных используются ряды динамики, различающиеся по следующим признакам: по времени, форме представления уровней, по расстоянию между датами или интервалами.

По времени различают моментные и интервальные ряды динамики .

В моментных рядах уровни выражают состояние явления на критический момент времени – начало месяца, квартала, года и т.д.

Например, численность населения, численность работающих и т.д. В таких рядах каждый последующий уровень полностью или частично содержит значение предыдущего уровня, поэтому суммировать уровни нельзя, так как это приводит к повторному счету.

В интервальных – уровни отражают состояние явления за определенный период времени – сутки, месяц, год и т.д. Это ряды показателей объема производства, объема продаж по месяцам года, количества отработанных человеко-дней и т.д.

По форме представления уровней различают ряды абсолютных, относительных и средних величин .

По расстоянию между датами или интервалами ряды динамики делятся на ряды с равноотстоящими и неравноотстоящими уровнями.

В рядах с равноотстоящими уровнями расстояние между датами или периодами одинаково, в рядах с равноотстоящими уровнями – оно различно.

С помощью рядов динамики в статистике решают следующие задачи :

Получение характеристик интенсивности изменения явления во времени и характеристик отдельных уровней;

Выявление и количественная оценка основной долговременной тенденции развития явления;

Изучение периодических и сезонных колебаний явления;

Экстраполяция и прогнозирование.

Обработка рядов динамики осуществляется в 3 этапа :

1. Определение системы характеристики динамического ряда;

2. Разложение ряда на отдельные компоненты;

3. Прогнозирование на основе экстраполяции.

    Система характеристик динамического ряда

Система характеристик динамического ряда включает в себя:

индивидуальные (частные) характеристики;

сводные (обобщающие) характеристики .

К индивидуальным показателям интенсивности изменения явления относятся:

— абсолютный прирост Δ;

— темп роста (коэффициент роста);

— темп прироста ;

— абсолютное значение одного процента прироста .

Первые три из перечисленных характеристик можно рассчитать двумя способами в зависимости от применяемой базы сравнения. База сравнения может быть постоянной или переменной. Соответственно, можно рассчитать базисные или цепные характеристики динамического ряда .

Абсолютный прирост (Δ) – характеризует размер увеличения (уменьшения) уровня ряда по сравнению с выбранной базой :

— цепной абсолютный прирост показывает, на сколько изменилось значение данного уровня по сравнению с предыдущим, то есть приращение уровня по сравнению с предыдущим:

— базисный абсолютный прирост показывает, на сколько изменилось значение данного уровня по сравнению с исходным (начальным) уровнем:

Между базисными и цепными абсолютными приростами существует взаимосвязь: сумма всех цепных абсолютных приростов равна базисному приросту конечного уровня.

Коэффициент роста (относительный прирост) характеризует интенсивность изменения уровней ряда (скорость изменения уровней). Он показывает, во сколько раз уровень данного периода выше или ниже базисного уровня . Этот показатель как относительная величина, выраженная в долях единицы, называется коэффициентом (индексом) роста ; выраженная в процентах, называется темпом роста .

Цепной коэффициент роста показывает, во сколько раз текущий уровень выше или ниже предыдущего:

Базисный коэффициент роста показывает, во сколько раз текущий уровень выше или ниже начального уровня:

Между базисными и цепными темпами (коэффициентами) роста имеется зависимость: произведения последовательных цепных коэффициентов роста равно базисному коэффициенту роста за весь промежуток времени.

Коэффициент роста всегда есть положительная величина, область его допустимых значений — (0 — + ∞).

Темп прироста характеризует относительную скорость изменения уровня ряда в единицу времени. Показывает, на сколько процентов уровень данного периода или момента времени выше или ниже базисного уровня .

Цепной темп прироста рассчитывается по формуле:

Он показывает, на сколько процентов уровень текущего периода выше или ниже предыдущего уровня.

Базисный темп прироста равен:

Базисный темп прироста показывает, на сколько процентов уровень текущего периода выше или ниже начального уровня ряда.

Абсолютное значение одного процента прироста используется для оценки значения полученного темпа прироста. Он показывает, какое абсолютное значение соответствует одному проценту прироста. Показатель считается по цепным характеристикам:

    Средние уровни ряда и приемы их исчисления

Вторая часть системы характеристик динамического ряда состоит из обобщающих характеристик, к которым относятся его средние показатели:

— средний уровень ряда ;

— средний абсолютный прирост ;

— средний коэффициент роста (темп роста);

— средний темп прироста ;

Расчет среднего уровня ряда динамики определяется видом ряда и величиной интервала, соответствующего каждому уровню. Средний уровень характеризует наиболее типичную величину уровней, центр ряда .

В интервальных рядах с равноотстоящими интервалами средний уровень ряда определяется по формуле средней арифметической простой:

где — средний уровень ряда динамики;

n – число уровней

В интервальных рядах с неравноотстоящими уровнями используется формула средней арифметической взвешенной :

где – длительность интервала времени между уровнями.

Средний уровень моментного ряда динамики так исчислять нельзя, так как отдельные уровни содержат элементы повторного счёта. Для моментного ряда с равноотстоящими уровнями средний уровень находится по формуле средней хронологической :

Средний уровень моментных рядов динамики с неравноотстоящими уровнями определяется по формуле средней хронологической взвешенной :

Средний абсолютный прирост является обобщающим показателем изменения явления во времени. Он показывает, на сколько в среднем за единицу времени изменяется уровень ряда и рассчитывается как простая средняя арифметическая из показателей абсолютных цепных приростов:

Средний абсолютный прирост так же может рассчитываться базисным способом по формуле:

Средний коэффициент роста (средний относительный прирост) показывает, во сколько раз в среднем за единицу времени изменился уровень динамического ряда . Эта характеристика имеет важное значение при выявлении и описании основной долговременной тенденции развития, используется в качестве обобщенного показателя интенсивности развития явления за длительный период времени.

Средний коэффициент роста цепным способом вычисляется по формуле простой средней геометрической :

где m – число коэффициентов роста,

— коэффициенты роста, рассчитанные цепным способом.

Базисный способ расчета среднего коэффициент роста осуществляется по формуле:

Средний темп роста рассчитывается путем умножения коэффициента роста на 100%.

Средний темп прироста показывает, на сколько процентов в среднем за единицу времени изменяется уровень ряда. Он определяется на основе среднего темпа роста.

Понятие и значение темпа прироста

Темп прироста используется при анализе какого-либо ряда динамики. Формула темпа прироста часто применяется в статистике и экономике в паре с таким показателем, как темп роста (в процентном соотношении).

ОПРЕДЕЛЕНИЕ Темп роста показывает во сколько раз изменился показатель в сравнении с базовым, а темп прироста отражает, на сколько изменилась исследуемая величина.

Если в результате расчета получается положительная величина, то можно говорить об увеличивающемся темпе прироста, при отрицательном же значении происходит снижение темпа исследуемого значения, если сравнивать его с предыдущим (базисным) периодом.

Формула темпа прироста часто применяется в анализе инвестиционных проектов. Также этот показатель часто используется муниципальными организациями при расчетах:

  • вычисление прироста населения;
  • будущей потребности в зданиях;
  • объемов оказания услуг и др.

Формула темпа прироста

Для расчета темпа прироста нужно найти отношение исследуемого показателя к предыдущему (базисному), далее из получаемого результата вычесть единицу. Окончательный результат умножается на 100, для того, что бы выразить итог в процентах. Формула темпа прироста по первому способу выглядит так:

Тп=((Пип/Пбп)-1)*100%

Здесь Тп – темп прироста,

Пбп – показатель базисного периода,

Пип – показатель исследуемого периода.

В случае, когда вместо фактического значения анализируемых показателей известно только значение абсолютного прироста, применяют альтернативную формулу. При этом находят процентное отношение абсолютного прироста к тому уровню, в сравнении с которым он и рассчитывался.

Тп=((Пип-Пбп)/Пбп)*100%

Здесь Тп – темп прироста,

Пбп – показатель базисного периода,

Пип – показатель исследуемого периода.

Отличие темпа роста и темпа прироста

Большую сложность для учащихся представляет отличие темпа роста от темпа прироста. Выделим несколько положений, в которых заключается разница между этими величинами:

  1. Формула темпа роста и формула темпа прироста рассчитываются по разным методикам.
  2. Темп роста отражает количество процентов одного показателя относительно другого, а темп прироста показывает, насколько он вырос.
  3. На основании расчетов по формуле темпа роста можно рассчитать темп прироста, при этом по формуле темпа прироста расчет темпа роста не проводят.
  4. Темп роста не принимает отрицательное значение, при этом темп прироста может получаться как положительной, так и отрицательной величиной.

ПРИМЕР 1 ПРИМЕР 1

Темп роста — это прирост какой-либо изучаемой величины за один временной период (обычно применяется к году).

Темп прироста — это прирост какой либо изучаемой величины за один временной период за вычетом 100%.

Темп роста и темп прироста измеряются в процентах и являются относительными величинами. Темп роста — всегда величина положительная, темп прироста может быть отрицательным. Темп прироста равен темп роста минус 100%.

Теперь рассмотрим расчет темпа роста и темпа прироста более подробно.

Помогу разобраться с расчетами темпа роста и прироста ОНЛАЙН ЗДЕСЬ

Расчет темпа роста и прироста

Для наглядности СКАЧАЙТЕ ФАЙЛ РАСЧЕТА, в котором отражен расчет: темп роста и темп прироста. Обратите внимание: на первом листе книги файла расчетов представлен расчет, а на втором листе книги файла расчетов — формулы расчета темпа роста и прироста.

На рисунке представлен пример расчета темпа роста и прироста:

Для наглядности на рисунке ниже приведен этот же пример, только с открытыми формулами:

На рисунке видно, что определение темпа роста осуществляется путем деления Показателя 2 на Показатель 1 и умножения на 100%. При этом темп прироста равен: деление показателя 2 на показатель 1 умножение на 100% и минус 100%, то есть темп прироста равен темп роста минус 100%.

Расчет средних темпов роста и прироста

Так же на рисунках указано как рассчитывается средний темп роста и средний темп прироста. Для определения среднего темпа роста необходимо сложить показатели за все четыре периоды и разделить полученную сумму на количество периодов, то есть на 4. Аналогично рассчитывается средний темп прироста — сумма темпов прироста за все периоды делится на количество периодов.

Помогу разобраться с расчетами темпа роста и прироста ОНЛАЙН ЗДЕСЬ

Расчет базисного темпа роста и базисного темпа прироста

Для наглядности СКАЧАЙТЕ ФАЙЛ РАСЧЕТА, в котором отражен расчет: базисный темп роста, базисный темп прироста, цепной темп роста, цепной темп прироста. Обратите внимание: на первом листе книги файла расчетов представлен расчет, а на втором листе книги файла расчетов — формулы расчета темпа роста и прироста.

На рисунке ниже представлен расчет базисного темпа роста и прироста (таблицы 2 и 3):

Расчет базисного темпа роста заключается в том, что необходимо произвести расчет темпов роста всех показателей. Обратите внимание, что тем роста (прироста) первого показателя рассчитать нельзя.

Помогу разобраться с расчетами темпа роста и прироста ОНЛАЙН ЗДЕСЬ

В примере за базисный показатель принят Показатель 1, поэтому базисный темп роста или базисный темп прироста рассчитывается исходя из этого положения, то есть при расчете базисного темпа роста Показатель 2 делим на Показатель 1 и умножаем на 100, далее Показатель 3 делим на Показатель 1 и умножаем на 100, далее Показатель 3 делим на Показатель 1 и умножаем на 100, при расчете базисного темпа прироста из каждого показателя базисного темпа роста вычитаем 100.

Расчет цепного темпа роста и цепного темпа прироста

На рисунке выше представлен расчет базисного темпа роста и прироста (таблицы 4 и 5).

Расчет цепного темпа роста заключается в том, что необходимо произвести расчет темпов роста всех показателей. Обратите внимание, что тем роста (прироста) первого показателя рассчитать нельзя. В отличие от базисного темпа роста или прироста, цепной темп роста или прироста рассчитывается из текущего и предыдущего показателя.

То есть цепной темп роста или цепной темп прироста рассчитывается следующим образом: Показатель 2 делим на Показатель 1 и умножаем на 100, далее Показатель 3 делим на Показатель 2 и умножаем на 100, далее Показатель 4 делим на Показатель 3 и умножаем на 100, при расчете цепного темпа прироста из каждого показателя цепного темпа роста вычитаем 100.

Для того, чтобы закрепить полученную информацию, обратите внимание на рисунок ниже, в котором отражены формулы расчета: базисный темп роста, базисный темп прироста, цепной темп роста, цепной темп прироста:

Обратите внимание, что при расчете базисного и цепного показателей, значения базисного и цепного темпов роста и прироста равны, так как при избрании в качестве базисного показателя первого из ряда, они рассчитываются одинаково.

Помогу разобраться с расчетами темпа роста и прироста ОНЛАЙН ЗДЕСЬ

3.1. Понятие выборки (применительно к исследованию в психологии)

3.2. Не любите проводить социологическое исследование? Вы просто не умеете его готовить!

3.3. Корреляционный анализ по методу Спирмена (ранги Спирмена)

3.4. Дискуссия: Объект и Предмет исследования или наоборот?

3.5. Решение задач по праву. Как решить задачу по Юриспруденции?

3.6. Как рассчитать темп роста и прироста?

3.7. Как выбрать тему дипломной работы?

3.8. Методы исследования в дипломе, пример

FILED UNDER : Статьи

Submit a Comment

Must be required * marked fields.

:*
:*