admin / 22.06.2020

4.3. Наращенная сумма

Смотри ещё

  • Макроэкономическая нестабильность / Задача №32. Расчёт наращенной суммы вклада с учётом инфляции
  • Макроэкономическая нестабильность / Задача №33. Расчёт реального дохода вкладчика с учётом инфляции
  • Рынки факторов производства / Задача №161. Выбор проекта для инвестирования
  • Финансовая математика / Задача №1. Расчёт наращенной суммы долга
  • Финансовая математика / Задача №2. Наращение по простой ставке процента
  • Финансовая математика / Задача №3. Рассчёт суммы долга с процентами при сроке менее года
  • Финансовая математика / Задача №5. Расчёт процентных денег
  • Финансовая математика / Задача №8. Расчёт наращенной суммы с переменной ставкой
  • Финансовая математика / Задача №18. Расчёт наращенной суммы вклада
  • Финансовая математика / Задача №22. Расчёт суммы, полученной владельцем векселя при учете
  • Финансовая математика / Задача №23. Расчёт учётной ставки
  • Финансовая математика / Задача №24. Сравнение вариантов наращения
  • Финансовая математика / Задача №25. Расчёт общего дохода банка от операции вексельного учёта
  • Финансовая математика / Задача №26. Расчёт ставки процентов по кредиту с учетом инфляции
  • Финансовая математика / Задача №30. Расчёт наращенной суммы вклада

Формулы наращенной суммы

Рассмотрим наращение для различных случаев начисления рент.

1. Обычная годовая рента.

Пусть в конце каждого года в течение п лет на расчетный счет вносится по R рублей, проценты начисляются один раз в год по ставке i. В этом случае первый взнос к концу срока ренты возрастет до величины так как на сумму R проценты начислялись в течение (п — 1) года. Второй взнос увеличится до и т.д. На последний взнос проценты не начисляются.

Таким образом, в конце срока ренты ее наращенная сумма будет равна сумме членов геометрической прогрессии

в которой первый член равен R, знаменатель (1+ i), число членов п. Эта сумма равна

(1)

где

(2)

называется коэффициентом наращения ренты. Он зависит только от срока ренты п и уровня процентной ставки i.

Наращенная сумма ренты пренумерандо в (1 + i) раз больше постнумерандо и при m= p =1

(3)

Пример 1.

Для создания пенсионного фонда в банк ежегодно выплачивается рента постнумерандо в размере 10 млн. р.. На поступающие платежи начисляются проценты по сложной годовой ставке 18%. Определить размер фонда через 6 лет.

Решение.

По формуле (1) имеем:

млн. р.

Ответ. Пенсионный фонд через 6 лет будет составлять 99,42 млн. р.

2. Годовая рента, начисление процентов m раз в году.

Пусть платежи делают один раз в конце года, а проценты начисляют т раз в году. Это означает, что применяется каждый раз ставка j/m, где j — номинальная ставка процентов. Тогда члены ренты с начисленными до конца срока процентами имеют вид

Если прочитать предыдущую строку справа налево, то получим геометрическую прогрессию, первый членом которой R, знаменатель (1+ j/m)m, число членов п. Сумма членов этой прогрессии будет наращенной суммой ренты. Она равна

(4)

Наращенная сумма ренты пренумерандо вычисляется по формуле

(5)

Пример 2.

В условиях примера 1 принять, что проценты банком начисляются ежеквартально по номинальной ставке 18% годовых. Сделать вывод, какой вариант начисления процентов выгоден кредитору.

Решение.

По формуле (4) имеем

= 97, 45 млн. р.

Ответ. Кредитору выгоден вариант примера 2.2., чтобы на ренту начислялись проценты ежеквартально, при этом размер фонда будет составлять 97,45 млн. р.

3. Рента p-срочная, m = 1.

Найдем наращенную сумму при условии, что рента выплачивается р раз в году равными платежами, а проценты начисляются один раз в конце года.

Если R — годовая сумма платежей, то размер отдельного платежа равен R/p. Тогда последовательность платежей с начисленными до конца срока процентами также представляет собой геометрическую прогрессию, записанную в обратном порядке,

у которой первый член R/p, знаменатель (1+ i)1/p, общее число членов пр. Тогда наращенная сумма рассматриваемой ренты равна сумме членов этой геометрической прогрессии

(6)

где

(7)

коэффициент наращения р-срочной ренты при m = 1.

Наращенная сумма ренты пренумерандо вычисляется по формуле:

(8)

Пример 3.

Господин Иванов вносит в банк в конце каждого месяца по 500 р.. На поступающие суммы платежей начисляются сложные проценты по годовой процентной ставке 22%. Определить размер начисленной суммы через 8 лет.

Решение.

По форомуле (6) найдем размер начисленной суммы:

S = 500 / = 52,806 тыс. р.

Ответ. Размер начисленной банком суммы господину Иванову через 8 лет составит 52,806 тыс. р.

4. Рента p-срочная, р = т.

В контрактах часто начисление процентов и поступление платежа совпадают во времени. Таким образом число платежей р в году и число начислений процентов т совпадают, т.е. р = т. Тогда для получения формулы расчета наращенной суммы воспользуемся аналогией с годовой рентой и одноразовым начислением процентов в конце года, для которой

Различие будет лишь в том, что все параметры теперь характеризуют ставку и платеж за период, а не за год. Таким образом, получаем

(9)

Наращенная сумма ренты пренумерандо вычисляется по формуле:

(10)

Пример 4.

Господин Петров должен отдать долг в размере 200 тыс. р. Для того, чтобы собрать эту сумму он планирует в течение 3-х лет в конце каждого полгода вносить в банк одну и ту же сумму и на нее каждые полгода начисляются сложные проценты по годовой ставке 15%. Какова должна быть величина вносимых господином Петровым полугодовых вкладов при полугодовом начислении процентов? Рассмотреть случай, когда в банк вносится сумма один раз в конце каждого года и начисление процентов производится по той же сложной процентной ставке.

Решение.

Из (9) найдем сумму (R), которую необходимо вносить в банк каждые полгода при полугодовом начислении сложных процентов:

R = S j / = 200 × 0,15 / = 55,228 тыс. р.

Из формулы (1) найдем сумму, которую необходимо вносить в банк каждый год при годовом начислении сложных процентов:

R = S j / = 200 × 0,15 / = 57,692 тыс. р.

Ответ. Господину Петрову необходимо вносить в банк каждые полгода и полугодовом начислении сложных процентов сумму, равную 55,228 тыс. р. и сумму в 57,692 тыс. р. при ежегодном вкладе и годовом начислении сложных процентов. Первый вариант вклада для него более выгоден.

5. Рента р-срочная, p ³ 1 , m ³ 1.

Это самый общий случай р-срочной ренты с начислением процентов т раз в году, причем, возможно р ¹ т.

Первый член ренты R/p, уплаченный спустя 1/р года после начала, составит к концу срока вместе с начисленными на него процентами

второй член ренты к концу срока возрастет до

и т.д. Последний член этой записанной в обратном порядке геометриче­ской прогрессии равен R/p, ее знаменатель (1+ j/m)m/p, число членов пp. В результате получаем наращенную сумму

(11)

Наращенная сумма ренты пренумерандо определяется по формуле:

(12)

Пример 5.

Предприятие создает страховой фонд, для чего направляет в банк платежи в размере 100 тыс. р. в конце каждых 4-х месяцев, начисление сложных процентов банк производит 1 раз в полгода по годовой ставке 18%. Определить размер страхового фонда через 10 лет.

Решение.

По формуле (11) найдем:

тыс.руб.

Ответ. Размер страхового фонда предприятия через 10 лет составит 7790,86 тыс.р.

Для чего человек несет свои сбережения в банк? Конечно же, чтобы обеспечить их сохранность, и самое главное — получить доходы. И вот здесь знание формулы простых или сложных процентов, а также умение составить предварительный расчет процентов по депозиту как никогда пригодится. Ведь прогнозирование процентов по вкладам или процентов по кредитам относится к одной из составляющих разумного управления своими финансами. Такое прогнозирование хорошо осуществлять до подписания договоров и совершения финансовых операций, а также в периоды очередного начисления процентов и причисления их к вкладу по уже оформленному депозитному договору.
Для начисления процентов по вкладам (депозитам), да и кредитам тоже, применяются следующие формулы:

  1. формула простых процентов,
  2. формула сложных процентов.

Порядок начисления процентов по вышеперечисленным формулам осуществляется с использованием фиксированной или плавающей ставки. Чтобы не возвращаться к данному вопросу в дальнейшем, сразу поясню значение слов и отличия фиксированной ставки и плавающей ставки.
Фиксированная ставка, это когда установленная по вкладу банка процентная ставка, закреплена в депозитном договоре и остается неизменной весь срок вложения средств, т.е. фиксируется. Такая ставка может измениться только в момент автоматической пролонгации договора на новый срок или при досрочном расторжении договорных отношений и выплате процентов за фактический срок вложения по ставке «до востребования», что оговаривается условиями.

Плавающая ставка, это когда первоначально установленная по договору процентная ставка может меняться в течение всего срока вложения. Условия и порядок изменения ставок оговариваются в депозитном договоре. Процентные ставки могут изменяться: в связи с изменениями ставки рефинансирования, с изменением курса валюты, с переходом суммы вклада в другую категорию, и другими факторами.
Для начисления процентов с применением формул, необходимо знать параметры вложения средств на депозитный счет, а именно:

  • сумму вклада (депозита),
  • процентную ставку по выбранному вкладу (депозиту),
  • цикличность начисления процентов (ежедневно, ежемесячно, ежеквартально и т.д.),
  • срок размещения вклада (депозита),
  • иногда требуется и вид используемой процентной ставки — фиксированной или плавающей.

Теперь давайте рассмотрим названные выше стандартные формулы процентов, которые применяются для расчета процентов по вкладам (депозитам).

Формула простых процентов

Формула простых процентов применяется, если начисляемые на вклад проценты причисляются к вкладу только в конце срока депозита или вообще не причисляются, а переводятся на отдельный счет, т.е. расчет простых процентов не предусматривает капитализации процентов.
При выборе вида вклада, на порядок начисления процентов стоит обращать внимание. Когда сумма вклада и срок размещения значительные, а банком применяется формула простых процентов, это приводит к занижению суммы процентного дохода вкладчика. Формула простых процентов по вкладам выглядит так:
Формула простых процентов
Значение символов:
S — сумма денежных средств, причитающихся к возврату вкладчику по окончании срока депозита. Она состоит из первоначальной суммы размещенных денежных средств, плюс начисленные проценты.
I – годовая процентная ставка
t – количество дней начисления процентов по привлеченному вкладу
K – количество дней в календарном году (365 или 366)
P – первоначальная сумма привлеченных в депозит денежных средств
Sp – сумма процентов (доходов).
А чтобы рассчитать только сумму простых процентов формула будет выглядеть так:
Формула суммы простых процентов Значение символов:
Sp – сумма процентов (доходов).
I – годовая процентная ставка
t – количество дней начисления процентов по привлеченному вкладу
K – количество дней в календарном году (365 или 366)
P – сумма привлеченных в депозит денежных средств.
Приведу условные примеры расчета простых процентов и суммы банковского депозита с простыми процентами:
Пример 1. Предположим, что банком принят депозит в сумме 50000 рублей на срок 30 дней. Фиксированная процентная ставка — 10,5 % «годовых». Применяя формулы, получаем следующие результаты:
S = 50000 + 50000 * 10,5 * 30 / 365 / 100 = 50431,51
Sp = 50000 * 10,5 * 30 / 365 / 100 = 431,51
Пример 2. Банком принят депозит в той же сумме 50000 рублей сроком на 3 месяца (90 дней) по фиксированной ставке 10,5 процентов «годовых». В условиях поменялся только срок вложения.
S = 50000 + 50000 * 10,5 * 90 / 365 / 100 = 51294,52
Sp = 50000 * 10,5 * 90 / 365 / 100 = 1294,52
При сравнении двух примеров видно, что сумма ежемесячно начисленных процентов по формуле простых процентов не меняется.

431,51 * 3 месяца = 1294,52 рубля.
Пример 3. Банком принят депозит в сумме 50000 рублей сроком на 3 месяца (90 дней) по фиксированной ставке 10,5 процентов «годовых». Вклад пополняемый, и на 61 день произведено пополнение вклада в сумме 10000 рублей.
S1 =50000 + 50000 * 10,5 * 60 / 365 / 100 = 50863.01
Sp1 = 50000 * 10,5 * 60 / 365 / 100 = 863.01
S2 = 60000 + 60000 * 10,5 * 30 / 365 / 100 = 60517.81
Sp2 = 60000 * 10,5 * 30 / 365 / 100 = 517.81
Sp = Sp1 + Sp2 = 50000 * 10,5 * 60 / 365 / 100 + 60000 * 10,5 * 30 / 365 / 100 = 863,01 + 517,81 = 1380,82
Пример 4. Банком принят депозит в той же сумме 50000 рублей сроком на 3 месяца (90 дней), по плавающей ставке. На первый месяц (30 дней) процентная ставка — 10,5 %, на последующие 2 месяца (60 дней) процентная ставка – 12 %.
S1 = 50000 + 50000 * 10,5 * 30 / 365 / 100 = 50000 + 431,51 = 50431.51
Sp1 = 50000 * 10,5 * 30 / 365 / 100 = 431,51
S2 = 50000 + 50000 * 12 * 60 / 365 / 100 = 50000 + 986,3 = 50986.3
Sp2 = 50000 * 12 * 60 / 365 / 100 = 986,3
Sp = 50000 * 10,5 * 30 / 365 / 100 + 50000 * 12 * 60 / 365 / 100 = 431,51 + 986,3 = 1417,81

Формула сложных процентов

Формула сложных процентов применяется, если начисление процентов по вкладу, осуществляется через равные промежутки времени (ежедневно, ежемесячно, ежеквартально) а начисленные проценты причисляются к вкладу, т. е. расчет сложных процентов предусматривает капитализацию процентов (начисление процентов на проценты).
Большинство банков, предлагают вклады с поквартальной капитализацией (Сбербанк России, ВТБ и т. д.), т.е. с начислением сложных процентов. А некоторые банки, в условиях по вкладам предлагают капитализацию по окончанию срока вложения, т.е. когда вклад пролонгируется на следующий срок, что, мягко говоря, относится к рекламному трюку, который подталкивает вкладчика не забирать начисляемые проценты, но само начисление процентов фактически осуществляется по формуле простых процентов. И повторюсь, когда сумма вклада и срок размещения значительные, такая «капитализация» не приводит к увеличению суммы процентного дохода вкладчика, ведь начисления процентов на полученные в предыдущих периодах процентные доходы нет.
Формула сложных процентов выглядит так:
Формула сложных процентов
Значение символов:
I – годовая процентная ставка;
j – количество календарных дней в периоде, по итогам которого банк производит капитализацию начисленных процентов;
K – количество дней в календарном году (365 или 366);
P – первоначальная сумма привлеченных в депозит денежных средств;
n — количество операций по капитализации начисленных процентов в течение общего срока привлечения денежных средств;
S — сумма денежных средств, причитающихся к возврату вкладчику по окончании срока депозита. Она состоит из суммы вклада (депозита) с процентами.
Расчет только сложных процентов с помощью формулы, будет выглядеть так:
Расчет только сложных процентов
Значение символов:
I – годовая процентная ставка;
j – количество календарных дней в периоде, по итогам которого банк производит капитализацию начисленных процентов;
K – количество дней в календарном году (365 или 366);
P – первоначальная сумма привлеченных в депозит денежных средств;
n — количество операций по капитализации начисленных процентов в течение общего срока привлечения денежных средств;
Sp – сумма процентов (доходов).
Приведу условный пример расчета сложных процентов и суммы банковского депозита со сложными процентами:
Пример 5. Принят депозит в сумме 50 тыс. руб. сроком на 90 дней по фиксированной ставке 10,5 процентов годовых. Начисление процентов – ежемесячно. Следовательно, количество операций по капитализации начисленных процентов (п) в течение 90 дней составит – 3. А количество календарных дней в периоде, по итогам которого банк производит капитализацию начисленных процентов (j) составит – 30 дней (90/3). Какова будет сумма процентов?
S = 50000 * (1 + 10,5 * 30 / 365 / 100)3 = 51305,72
Sp = 50000 * (1 + 10,5 * 30 / 365 / 100)3 — 50000 = 1305,72
Убедиться в правильности суммы процентов, рассчитанный по методу сложных процентов можно, перепроверив расчет с помощью формулы простых процентов.
Для этого разобьем срок депозита на 3 самостоятельных периода(3 месяца) по 30 дней и рассчитаем проценты для каждого периода, использую формулу простых процентов. Сумму депозита в каждом следующем периоде будем брать с учетом процентов за предыдущие периоды. В результате расчета получилось:

месяцы Р – сумма депозита I -Процентная ставка t – количество дней начисления процентов Sp – сумма процентов S -суммы размещенных денежных средств + начисленные проценты. (2+5)
1 2 3 4 5 6
1 50000.00 10.5 30 431.51 50431.51
2 50431.51 10.5 30 435.23 50866.74
3 50866.74 10.5 30 438.98 51305.72

Итак, общая сумма процентов с учетом ежемесячной капитализации (начисления процентов на проценты) составляет:
Sp = Sp1 + Sp2 + Sp3 = 431,51 + 435,23+ 438,98 = 1305,72
Это соответствует сумме, рассчитанной по сложным процентам в примере № 5.
А при расчете процентов за этот же период по формуле простых процентов в примере №2, доход составил только 1294,52 руб. Капитализация процентов принесла вкладчику дополнительно 11,2 руб. (1305,72 – 1294,52), т.е. большая доходность получается у вкладов с капитализацией процентов, когда применяются сложные проценты.
При начислении процентов необходимо учитывать и еще один маленький нюанс. При определении количества дней начисления процентов по вкладу (t) или количества календарных дней в периоде, по итогам которого банк производит капитализацию начисленных процентов (j), не учитывается день закрытия (снятия) вклада. Так, например, 02.11.07 банк принял депозит сроком на 7 дней. Полный срок депозита с 02.11.07 по 09.11.07, т.е. 8 календарных дней. А период начисления процентов по депозиту будет с 02.11.07 по 08.11.07, т.е. – 7 календарных дней. День 09.11.07 в расчет не принимается т.к. депозит возвращен клиенту.
Заканчивая материал, хочу еще раз обратить ваше внимание на то, что по приведенным формулам процентов можно производить и расчеты процентов по кредитам. Удачного вам подсчета своих доходов и расходов.

FILED UNDER : Статьи

Submit a Comment

Must be required * marked fields.

:*
:*